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Abstract— In this paper, we propose a novel machine learning
architecture for facial reenactment. In particular, contrary to
the model-based approaches or recent frame-based methods
that use Deep Convolutional Neural Networks (DCNNs) to
generate individual frames, we propose a novel method that
(a) exploits the special structure of facial motion (paying
particular attention to mouth motion) and (b) enforces temporal
consistency. We demonstrate that the proposed method can
transfer facial expressions, pose and gaze of a source actor
to a target video in a photo-realistic fashion more accurately
than state-of-the-art methods.

I. INTRODUCTION

Facial reenactment aims at transferring the expression of
a source actor to a target face. It is a challenging problem,
in the cutting edge of research and technology, with many
applications in video editing, movie dubbing, telepresence
and virtual reality. Recent works have produced impressive
results and have attracted the attention of the research
community, the industry, as well as the general public.

The majority of facial reenactment methods transfer the
expressions of the source actor by modifying the deforma-
tions within solely the inner facial region of the target actor,
without altering the head movements of the target video [1],
[2], [3], [4], [5], [6]. Thus, even in cases where this expres-
sion transfer is performed well, the overall reenactment result
might seem uncanny and non-plausible, as the head motion
of the target may not match with the transferred expressions.
Various recent methods attempt to transfer the entire head
motion [7], [8], [9], [10]. Despite their promising results,
these methods have limitations in terms of how realistic
the reenactment result looks. X2face [7] is a warping-based
approach, which is sometimes unsuccessful on preserving
the identity of target person and the results often look
unrealistic. Deep Video Portraits [8] performs image-based
head reenactment, by conditioning an image-to-image trans-
lation neural network on 3D facial information. As frames
are synthesised independently from each other, there are
cases where videos exhibit temporal incoherence between
the generated frames, especially in the mouth region.

Our proposed approach overcomes all the aforementioned
limitations. We fully transfer the pose, facial expression
and eye gaze movement from a source to target video,
while preserving the identity of the target and maintaining a
consistent motion of the upper body part. Given that people
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easily detect mistakes in the appearance of a human face
(uncanny valley effect), we give special attention in the
details of the mouth and teeth. Our system generates photo-
realistic and temporally consistent videos of faces.

II. RELATED WORK

A. 3D Face Reconstruction

Human faces have attracted substantial attention in the
computer vision field due to their centrality in many appli-
cations. A growing line of research revolves around recon-
structing the 3D geometry of the face and employing this
information in further ad-hoc steps, as we do in this work.
Some attempts on 3D face reconstruction [11], [12], [13],
known as Shape From Shading, work on approximating the
image formation process and postulate simplified assump-
tions about the lighting and illumination models leading to
the formation of the image, while others, known as Structure
from Motion (SfM), capitalise on the geometric constraints
in multiple images of the same object to approach the
reconstruction task [14], [15], [16]. 3D Morphable Models
(3DMMs) have been researched and used substantially in the
literature since the pioneering work of Blanz and Vetter [17],
with many extensions [18], [19], [20]. 3DMMs are generative
parametric models for the 3D representation of human faces.
They are built from a set of 3D facial scans, coupled to each
other with anatomical correspondences, and can represent
any unseen faces as a linear combination of the training set.

B. Facial Reenactment and Full Head Reenactment Methods

A plethora of works is devoted to the problem of facial
reenactment [2], [4], [5], [9]. Expressions are transferred ei-
ther by 2D warping techniques, based on dense motion fields
[1], [21], [9], or by fitting and manipulating parametric 3D
face models [6], [4], [5]. A well-known facial reenactment
system is Face2Face [5], which relies on monocular 3D face
reconstruction on both the source and target videos and op-
erates in real time. Neural Textures [22] is another approach
to facial reenactment, achieving high quality results. In this
method, texture features are learned from the target video
and translated to RGB images with a neural renderer.

Although many of these facial reenactment systems pro-
duce highly realistic results, they do not provide complete
control over the generated video. There is a limited number
of works in the direction of full head motion transfer [7],
[8], [9], [10]. Averbuch-Elor et al. [9] use a target portrait
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Fig. 1: The pipeline of our Head2Head approach marked by two subsequent stages: 1) facial reconstruction and tracking,
2) video rendering. The NMFC and eye gaze sequences computed in the first stage are used to drive the video synthesis.
During training, both the source and target frames come from the same (target) video, since we perform self-reenactment.

photo instead of a video and cannot deal well with large
variations in the head pose. The target gaze is not controlled
and the mouth appearance is copied from the source actor.
Zakharov et al. [10] propose a network that synthesises
frames conditioned on landmarks, using a few-shot adver-
sarial learning approach. However, their method does not
adapt the landmarks extracted from the source actor to the
head geometry of the target, leading to identity mismatches
of the generated video.

C. Image and Video Synthesis

Generative Adversarial Networks (GANs) [23] have been
widely used for photo-realistic image and video synthesis.
Instead of conditioning synthesis on noisy distributions [23],
[24], other data types are frequently used as input to the
generator, such as class labels [25] or images [26], [27], [28].
There is extended research on image-to-image translation
[29], [30], [26], [28]. Other methods [31], [32], [33], [34]
utilise the GAN framework on video synthesis tasks, such
as vid2vid [35]. In this work, we exploit a GAN-based ap-
proach for rendering photo-realistic video frames, providing
temporal stability and paramount image quality.

III. METHODOLOGY

Our proposed approach addresses the highly-challenging
problem of full-head reenactment. More specifically, we fully
transfer head pose, facial expression and eye gaze move-
ment from a source to target actor’s video. Our head2head
pipeline, illustrated in Fig. 1, consists of two main and con-
secutive stages: 1) 3D facial reconstruction and tracking, and
2) learning-based video rendering, using a neural network.

A. Facial Reconstruction and Tracking

To effectively disentangle the human head characteristics
in a transferable and photo-realistic way between different
facial videos, we benefit from the prior knowledge about
the targeted object. This knowledge has been effectively
addressed and captured with 3DMMs [17]. Thus, we harness
the power of 3DMMs for 3D reconstructing and tracking the
faces appearing in the input sequences. Given a sequence of

T frames F1:T = {ft | t = 1, . . . , T}, the 3D reconstruction
and tracking stage produces two sets of parameters: 1) shape
parameters S = {st | st ∈ Rni+ne , t = 1, ..., T} , and
2) camera parameters P = {pt | pt ∈ R7, t = 1, ..., T},
embodying rotation, translation and orthographic scale.

Shape representation. With 3D Morphable Models, a 3D
facial shape xt = [x1, y1, z1, ..., xN , yN , zN ]T ∈ R3N can be
represented mathematically as:

x(sit, s
e
t ) = x̄ + Uids

i
t + Uexps

e
t (1)

where x̄ ∈ R3N is the overall mean shape vector of the mor-
phable model, given by x̄ = x̄id + x̄exp, with x̄id and x̄exp

depicting the mean identity and expression of the model,
respectively. Uid ∈ R3N×ni is the identity orthonormal basis
with ni principal components (ni � 3N ), Uexp ∈ R3N×ne

is the expression orthonormal basis with the ne principal
components (ne � 3N ) and sit ∈ Rni , set ∈ Rne are the
identity and expression parameters of the morphable model.
We denote the joint identity and expression parameters of
a frame t by st = [sit

T , set
T ]T . In the adopted model (1),

the 3D facial shape x is a function of both identity and
expression coefficients (x(sit, s

e
t )), with expression variations

being effectively represented as offsets from a given identity
shape.

Video Fitting. To estimate the shape and pose parameters
of the source and target sequences in a quick and robust way,
we follow a novel batch landmark-based approach that takes
into account the information from all video frames simulta-
neously and exploits the rich dynamic information usually
contained in facial videos. Similar to [36], we exploit the
fact that the current state-of-the-art in facial landmarking can
achieve highly-reliable landmark localisation and therefore
fuse the landmarks information with high-quality 3D face
models, as the one described in (1), to achieve robust and
accurate 3D face reconstruction results. We assume that the
camera performs scaled orthographic projection (SOP) and
that the identity parameters sit are fixed (but unknown) over
all the frames, letting however the expression parameters set
as well as the camera parameters (scale and 3D pose) to vary



from one frame to another. In brief, for a given sequence of
frames, we minimise a cost function that consists of three
terms, see (2) : a) a sum of squared 2D landmark reprojection
errors over all frames (El), b) a shape priors term (Epr) that
imposes a quadratic prior over the identity and per-frame
expression parameters and c) a temporal smoothness term
(Esm) that enforces smoothness of the expression parameters
in time, by using a quadratic penalty of the second temporal
derivatives of the expression vector.

E(S,P) = wlEl(S,P) + wprEpr(S) + wsmEsm(Se) (2)

In addition, to deal with outliers (e.g. frames with strong
occlusions that cause gross errors in the landmarks), we
also impose box constraints on the identity and per-frame
expression parameters. Assuming that the camera parameters
(P) in (2) have been estimated in an initialisation stage,
the minimisation of the cost function results in a large-scale
least squares problem with box constraints, which we solve
efficiently by using the reflective Newton method of [37].
More details about the initialisation stage of our video fitting
step are available in the supplementary material.

3DMM details. For our set of experiments, the iden-
tity part of the 3DMM, {s̄id,Uid}, originates from the
Large Scale Morphable Model (LSFM) [38], [39] built
from approximately 10,000 scans of different people, the
largest 3DMM ever constructed, with varied demographic
information. In addition, the expression part of the model,
{x̄exp,Uexp} originates from the work of Zafeiriou et
al. [40], who built it using the blendshapes model of Face-
warehouse [41] and adopting Nonrigid ICP [42] to register
the blendshapes model with the LSFM model.

Gaze tracking. Since the human gaze direction is not
captured generally by 3D face scanners, 3DMMs of facial
shapes do not represent this characteristic. We, therefore,
employ a state-of-the-art gaze tracking technique [43] for
tracking the eyes in the source and target sequences.

Many state-of-the-art approaches [8], [5], etc. rely on
the analysis-by-synthesis framework for fitting 3DMMs to
images, which requires estimating more parameters (e.g.
illumination and reflectance) and solving a highly ill-posed
problem. On the other hand, our facial reconstruction and
tracking stage is a sparse-landmarks-based fast approach,
which requires only 68 facial landmarks extracted by [44],
as well as the frame sequence. Thanks to our novel video
rendering framework, the facial representation extracted
by our face tracker encapsulates adequate information for
synthesising photo-realistic and temporally smooth videos,
removing the need for more elaborate and slower 3D facial
reconstruction and tracking techniques.

B. Conditioning Images Generation

Given the estimated shape and camera parameters from
both the source and target frames at time t, we replace the
identity coefficients and the scale parameter of the source
actor with the ones from the target, creating the ”hybrid”
shape and camera parameters st, pt, as shown in Fig. 1.
Then, instead of feeding these per-frame face parameters

directly to the video rendering network, we create a more
meaningful representation in the image space. We rasterize
the 3D facial shape x(st), producing a visibility mask
(M ∈ RW×H ) in the image space. Each pixel of M stores
the ID of the corresponding visible triangle on the 3D
face from this pixel. Then, we encode the normalised x-y-z
coordinates of the centre of this triangle in another image,
termed as Normalised Mean Face Coordinates (NMFC ∈
RW×H×3) image, and utilise it as conditional input of the
video rendering stage, see equation (3) below.

NMFCt = E(R(x(st),pt), x̄), (3)

where R is the rasterizer, E is the encoding function and x̄ is
the normalised version of the utilised 3DMM mean face (see
(1)), so that the x-y-z coordinates of this face ∈ [0, 1]. This
representation is very convenient, as the rendering neural
network learns to associate it with the corresponding RGB
values, pixel by pixel, and, therefore, results in a realistic
and novel video synthesis.

In addition to the NMFC images, we condition the neural
video renderer on the gaze images (Gt), as can be seen
in Fig. 1. Gaze images are generated by connecting the
extracted eye landmarks at the gaze tracking stage with
edges, and filling the interior with color. The produced eye
gaze frames are in exact correspondence with the NMFC
frames, meaning that in both representations eyes should
appear at the same pixel locations.

C. Video Rendering Neural Network

Given a sequence of NMFC frames NMFC1:T and
the corresponding sequence of eye gaze frames G1:T , the
neural network learns to translate the conditional input video
x1:T ≡ {xt = (NMFCt,Gt)|xt ∈H×W×6}t=1,...,T to a
highly realistic and temporally coherent output video ỹ1:T ,
which shows the target actor performing exactly the same
head motions and eye blinks as the actor in the source video.
We train this network in a self-reenactment setting, where
the source actor coincides with the target actor. Therefore,
the generated video ỹi

1:T should be a reconstruction of the
ground truth yi

1:T , which is considered both as the source
and target video. We adopt a GAN framework for video
translation, where the generator G is trained in an adversarial
manner, alongside an image discriminator DI and a multi-
scale dynamics discriminator DD, which ensures that the
generated video is realistic, temporally coherent and conveys
the same dynamics of the target video. We further improve
the visual quality of the mouth area, by designing a dedicated
mouth discriminator DM .

Generator G. In order to model the dependence of the
produced frames on previous video time steps, we condition
synthesis of the t-th frame ỹt not only on the conditional
input xt, but also on the previous inputs xt−1 and xt−2, as
well as the previously generated frames ỹt−1 and ỹt−2, thus:

ỹt = G(xt−2:t, ỹt−2:t−1; θG). (4)

The generator is applied sequentially and the frames
are produced one after the other, until the entire output



sequence has been produced. The architecture of this network
is inspired by vid2vid [35]. It consists of two identical
encoding pipelines (see Fig. 1), where the first one receives
the concatenated NMFC and eye gaze images xt−2:t,
while the second one takes in the two previously generated
images ỹt−2:t−1. Their resulting features are first added and
then passed through the decoding pipeline, which brings
the output ỹt in a normalised [-1,+1] range, using a tanh
activation.

Image discriminator DI and mouth discriminator DM .
Both of these networks learn to distinguish real frames from
synthesised ones. During training, a random time step t′ in
the range [1, T ] is uniformly sampled. Then, the real pair
(xt′ , yt′) and the fake one (xt′ , ỹt′) are fed in DI . Moreover,
the corresponding mouth regions (xmt′ , y

m
t′ ) and (xmt′ , ỹ

m
t′ )

are cropped and passed to DM . In order to force these
generators to create high-frequency details in local patches
of the frames, we use a Markovian discriminator architecture
(PatchGAN), as in [26] and [35].

Dynamics discriminator DD. The dynamics discrimi-
nator is trained to detect videos with unrealistic temporal
dynamics. This network receives a set of K = 3 consecutive
real frames yt′:t′+K−1 or fake frames ỹt′:t′+K−1 in its input,
which were randomly drawn from the video. To be more
precise, DD is not conditioned only on these short video
clips of length K. Given the optical flow w1:T−1 of the
ground truth video y1:T , the purpose of DD is to ensure
that the flow wt′:t′+K−2 corresponds to the given video
clip. Therefore, the dynamics discriminator should learn to
identify the pair (wt′:t′+K−2,yt′:t′+K−1) as real and the pair
(wt′:t′+K−2, ỹt′:t′+K−1) as fake. In practice, we employ a
multiple scale dynamics discriminator, which performs the
task described above in three different temporal scales. The
first scale receives sequences in the original frame rate. Then,
the two extra scales are formed by choosing not subsequent
frames in the sequence, but sub-sampling the frames by a
factor of K for each scale.

Objective function: The objective of our GAN-based
framework can be expressed as an adversarial loss. We use
the LSGAN [45] loss, thus the adversarial objective of the
generator is:

LG
adv =

1

2
Et′∼U{1,T−2}[(DD(wt′:t′+1, ỹt′:t′+2)− 1)2]

+
1

2
Et′∼U{1,T}[(DI(xt′ , ỹt′)− 1)2 +DM (xmt′ , ỹ

m
t′ )− 1)2].

(5)

We add two more losses in the learning objective function of
the generator: 1) a VGG loss LG

vgg and 2) a feature matching
loss LG

feat [28], [35], which is based on the discriminators.
Given a ground truth frame yt and the synthesised frame
ỹt, we use the VGG network [46] to extract visual features
in different layers for both frames and compute the VGG
loss as in [28] and [35]. In a similar way, we compute the
discriminator feature matching loss, by extracting features
with the two discriminators DI and DD and computing the
`1 distance of these features for a fake frame ỹt and the

corresponding ground truth yt. The total objective for G is
given by:

LG = LG
adv + λvggLG

vgg + λfeatLG
feat (6)

In order to balance out the loss terms above, we set λvgg =
λfeat = 10. The image and mouth discriminators as well
as the dynamics discriminator are optimised under their
corresponding adversarial objective functions. All discrim-
inators share the same architecture, which is adopted from
pip2pixHD [28]. More details on our video rendering stage
are in the supplementary material.

Optical facial flow. To generate as realistic dynamics
as possible by our head2head video rendering network, it
is essential to condition the dynamics discriminator DD

on a very accurate facial flow of the target video. Most
state-of-the-art methods for optical flow estimation solve
this problem without any prior assumptions about the
objects appearing in consecutive images. Since human facial
performances exhibit non-rigid and composite deformations
as a result of very complex facial muscular interactions,
capturing their flow using off-the-shelf state-of-the-art
optical flow methods might not always produce visually
convincing synthesis. To overcome this issue, we capitalise
on the prior knowledge, as we target facial videos, and train
a specific network for this task. To start with, we utilise
a state-of-the-art network, called FlowNet2, for the optical
flow estimation [47]. This network was trained on publicly
available images after rendering them with synthesised
chairs modified by various affine transformations. We use
the pretrained models of [47] and fine-tune their network
on the 4DFAB dataset [48], which comes with dynamic
high-resolution 4D videos of subjects eliciting spontaneous
and posed facial behaviours. To create the ground truth
2D flow, we use the provided camera parameters of the
acquisition device and rasterize the 3D scans of around
750K frames so that the difference between each pair
of consecutive frames represents the 2D flow. For the
background, we generate the 2D flow estimates of the same
750K frames using the original FlowNet2 and use a masked
End-Point-Error (EPE) loss so that the background flow
stays the same and the foreground follows the ground truth
2D flow coming from the 4DFAB dataset.

IV. EXPERIMENTS

In this section, we demonstrate the capability of our
head2head framework in transferring the full head pose,
gaze, eye blinking and expression from a source to a target
video. Our approach was compared with state-of-the-art
methods and achieved very competitive, visually appealing
and realistic results. We conduct comprehensive experiments
and ablation studies, probing the performance of our pro-
posed approach both quantitatively and qualitatively. We col-
lected a database from publicly-available videos, all having a
spatial resolution of 256×256 pixels. This database consists
of multiple subjects, mainly well-known politicians (see
supplementary material for more results and visualisations).



Fig. 2: Quantitative assessment of the self-reenactment experiment on four different videos. In each pair, (left) synthesised
frame, (right) corresponding error (heat) map. White numbers in the corner of the heat maps represent the average error for
the entire corresponding test sequence. All images are in the range [0, 255].

The head2head pipeline requires only a footage of a few
minutes for training a model on the given target subject and
takes only around 5 hours on an NVIDIA Titan V GPU to
finish the training task.

Fig. 3: Cycle-head2head-reenactment results. Top to bottom:
driving (source) sequence, manipulated target sequence, ma-
nipulated source sequence driven by the manipulated target
sequence in the row before, per-pixel l2 distance between
first and third row. Numbers in the top-right corners of error
maps represent the average per-pixel error for each image.

A. Quantitative Results

We quantitatively evaluate the performance of our method
by conducting two sets of experiments: 1) self-reenactment,
and 2) cycle-reenactment. For self-reenactment, each target
video was split into a train (first two thirds) and a test (last
third) set, and the average per-pixel error was computed
over the test split. Note that the per-pixel error is defined
as the `2 distance between RGB images, assuming that the
range of values in each color channel is from 0 to 255.
Fig. 2 demonstrates the obtained quantitative results on four
different subjects (Justin, Joe, Merkel and Turnbull), with an
average of 4K training frames per video.

As a second experiment, we conducted a cycle-
reenactment test to assess the performance of our approach
in transparently transferring the human head attributes from
a source to a target and then back to the same source.
More specifically, given a source sequence X and a target
actor Y , we first train a network NY on the target Y .
Then, during test time, we transfer expression, pose and
gaze direction from the source to the target, generating a
video Ỹ = NY (X). To complete the cycle, another network
NX′ was trained on the same source subject of X , using the
training video X′ with different frames from X , such that
X ∩X′ = ∅. Then, another fake video was generated, as
X̃ = NX′(Ỹ ) and the average per-pixel distance between
X̃ and X was computed. Fig. 3 shows some randomly
selected source-target-source (X → Ỹ → X̃) frames and
the heat-maps (per-pixel `2 distance) between the frames in
the first (X) and third row (X̃). The average per-pixel error
over the entire test sequence, composed of 1K frames, is 9.3.

B. Qualitative Results

We show that our head2head framework performs a
highly accurate transfer of the expression, head pose and
eye gaze from the source to the target subject. We further
compare our method with the state-of-the-art Deep Video
Portraits [8] and two strong baselines: 1) pix2pix [26]
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Fig. 4: Comparison of our method with the pix2pix [26] base-
line conditioned on NMFC images, on the self-reenactment
task. We achieve better image quality and ground truth
reconstruction. Please zoom in for details.
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Fig. 5: Qualitative comparison with vid2vid conditioned on
landmarks [35]. The use of 3DMM and conditioning on
NMFC images enables identity and expression disentan-
glement. Our neural video renderer preserves the identity of
the target, in contrast to vid2vid, which distorts it.

conditioned on our novel NMFC and the eye gaze images
and 2) vid2vid conditioned on facial landmarks, as in [35].

We trained both baseline methods and our model on two
different target sequences (Obama and Turnbull). Then, we
performed a self-reenactment experiment for the two target
subjects and a full head transfer experiment from May to
Obama, Putin to Obama and Putin to Turnbull. We found
that the lack of sequential modeling when using an image-
to-image transfer method, such as pix2pix, results in low
quality and temporally incoherent frames. Examples from
our self-reenactment experiment on the test set of Obama and
Turnbull, are shown in Fig 4. It can be seen that our method

produces more convincing results than the pix2pix baseline
conditioned on NMFC and eyes images, for the task of
video reconstruction. Next, we demonstrate the importance
of the 3DMM and our novel NMFC conditioning input
to the neural video renderer. Given a sequence of driving
frames, our method successfully disentangles identity and
expression and generates a set of target frames with the head
movements of the source, while preserving facial attributes
of the target identity. On the other hand, vid2vid model
conditioning on landmarks distorts the appearance of the
target, since landmarks contain identity information from the
source sequence, which is then passed to the generated target
video, as seen in Fig. 5. To make the comparison fairer, we
rigidly registered the extracted landmarks of Putin to the
target’s. This helps to reduce the distortion coming from the
difference in scale, otherwise the vid2vid network generates
totally distorted and nonsensical images.

When comparing with [8], our method performs equally
well in terms of image quality and photo-realism, while we
achieve superior results in the interior of the mouth. As
can be seen in Fig. 6, our method outperforms the pose
and expression transfer of [8] in many cases. The head
movements and facial expressions of our generated sequence
match precisely with the ones in the source video.

C. Ablation Study

To evaluate the design choices made to build our
head2head framework, we carry out an ablation study
demonstrating the effect of each. We first show the effect
of combining our framework with FlowNet2 [47] versus our
facial flow. Table I (a) reports the average errors achieved
when doing the same self-reenactment test in figure 2. We re-
port smaller errors in all cases when using facial flow, which
both justifies the significance of utilising our facial flow and
makes it more descriptive of the facial dynamics. This is
expected, as our flow capitalises on the prior knowledge and

Fig. 6: Comparison with Deep video Portraits (dvp) [8]. Top to bottom: the driving (source) sequence, the target sequence
generated with our head2head method, the corresponding frames with Deep video Portraits method. Our poses and
expressions match better to the source. Please zoom in for details.



was exclusively trained on facial videos. Furthermore, we
explore the significance of the mouth discriminator network
DM in the self-reenactment scenario, on four individual
target subjects. We measure the average pixel distance in
a constrained area around the mouth, between the frames
generated with our method and the ground truth. As can be
seen in Fig. 2 and Fig. 3, mouth cavity is a challenging
region, with high errors, mainly due to the absence of
conditional input information about the teeth and mouth
interiors. The average pixel distances reported in Table I (b)
indicate that the use of a mouth discriminator significantly
improves our results. The improvements are demonstrated
visually in Fig. 7.

TABLE I: Ablation study results.

(a) Average pixel distance obtained
under a self-reenactment setup on the
videos in figure 2 when combining our
method with either FlowNet2 [47] or
our facial flow.

Ours (↓) Ours (↓)
Video FlowNet2 Face-Flow
Justin 6.9 6

Joe 9.3 7.7
Merkel 9 7.5

Turnbull 9.4 6.5

(b) Average pixel distance around
the mouth area, obtained under a
self-reenactment scenario, with and
without our dedicated mouth dis-
criminator DM .

Ours (↓) Ours (↓)
Video w/o Dm w/ Dm

May 11.2 10.1
Justin 11 10.4

Turnbull 11.3 10.7
Obama 22.3 19.4

w/ DM

w/o DM

Fig. 7: Generated frames by our head2head method, with
and without the mouth discriminator DM .

D. Automated Study

A recent eye-catching attempt in the field to automatically
detect fake videos manipulated by state-of-the-art facial ma-
nipulation methods was made by Rossler et al. [49]. With the
help of a well-trained Convolutional Neural Network (CNN),
the authors of [49] manage to outrank the performance
of human observers in detecting manipulated videos. Their
dataset (the largest publicly available dataset with facial
manipulations) was created by manipulating 1, 000 YouTube
videos, depicting real-world scenarios, with graphics-based
[5], [50] and learning-based [51], [22], facial reenactment
methods. In total, their forgery detection network was trained
on 1.8 million facially manipulated frames and reported very
high detection accuracy on the test split of their dataset
(around 99%).

To assess the realism of our synthesised videos auto-
matically, we utilise the trained forgery-detection network

provided by the authors of [49]. We randomly choose a
subset of 50 videos from their training dataset and manipulate
them based on the selected source-target combinations in
their work. The accuracy obtained by their network on our
generated fake videos is only 1.88%. This demonstrates
high photo-realism and consistency of our fake videos, since
distinguishing them from real videos is challenging even for
such a well-trained system.

E. User Study

In addition, we performed a user study with two parts.
In the first one, we presented to the participants both real
and synthesised videos from our method and asked them
to assess how realistic they appear. The set of fake videos
was generated under three different scenarios, namely: self-
reenactment, face-reenactment, full-reenactment. All videos
were 5-seconds long. We asked the following question ”On a
scale of 1-5, how real does this video look?”, with 1 meaning
”absolutely fake” and 5 ”absolutely real”. Videos which re-
ceived a 4 or 5 rating can be considered as ”real”. The ratings
given by 95 anonymous participants are presented in Table
II and Table III. The percentage of ”real” videos according
to the ratings of the participants is comparable for both
synthetic and actually real videos. This strongly suggests that
our method generates results almost indistinguishable from
real videos and indicated that participants were excessively
cautious about detecting fake videos, as they had the task
explained in advance.

TABLE II: Ratings on the self-reenactment task. Columns 1-
5 show the number of participants that gave this rating, while
column ”real” shows the percentage of people that rated the
video with a 4 or 5.

Video Our synthesised videos Real videos
1 2 3 4 5 ”real” (↑) 1 2 3 4 5 ”real”

May 5 8 12 34 36 74% 3 6 6 26 54 84%
Turnbull 11 15 20 29 20 52% 2 6 14 40 33 77%
Putin* 4 10 18 36 27 66% 2 3 13 37 40 81%
Justin 5 8 18 36 28 67% 5 7 11 28 44 76%
dvp* 3 11 14 26 41 71% 9 12 21 29 24 56%

average 6 10 16 32 30 66% 4 7 13 32 39 75%

TABLE III: Ratings on the face-reenactment and full-
reenactment tasks.

Video Our synthesised videos Real videos
1 2 3 4 5 ”real” (↑) 1 2 3 4 5 ”real”

Merkel (face-reenact.) 16 21 20 22 16 40% 1 6 17 31 40 75%
Justin (full-reenact.) 8 12 25 39 11 53% 5 7 11 28 44 76%
dvp* (full-reenact.) 37 19 10 22 7 31% 9 12 21 29 24 56%

average (full-reenact.) 22 16 18 30 9 42% 7 10 16 28 34 66%

As a second experiment, we presented a source (driving)
video along with two target videos, one generated by our
head2head method and the other one synthesised by [8].
Both fake videos were created under a full-reenactment
setting, with the source and target subjects being those shown
in Fig. 6. Then, we asked the question: ”Which video follows
the movements of the person in the source better?”. Out of



the 70 anonymous participants that answered this question,
60% have chosen the video produced by our method,
showing an indisputable preference towards our result.

V. CONCLUSION

We presented head2head, a full-reenactment approach for
transferring the expression, head pose and the eye gaze from
a source to a target actor. Different to the state-of-the-art,
the proposed approach produces results that are temporally
consistent and capitalises on priors on dense face flow.
Furthermore, we pay particular attention to the mouth region
in order to further improve quality and realism of the result.
We demonstrate that our method can transfer facial motion
and head movement more accurately than the state-of-the-art.
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[49] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. Nießner, “FaceForensics++: Learning to detect manipulated facial
images,” in ICCV, 2019.

[50] Marek, “Faceswap.” github.com/MarekKowalski/FaceSwap/, 09/2019.
[51] torzdf, “Deepfakes.” github.com/deepfakes/faceswap, 09/2019.


